Weather Triggered Wireless Telemetry **Lightning Talk Detailed Design**

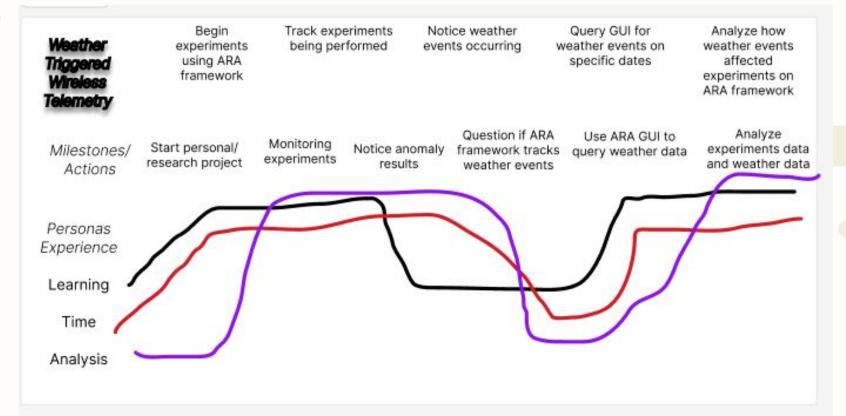
Group: sdmay25-18 Nisha Raj, Alex Chambers, Colin Kempf, Aidan Gull, Adam Fields, Alex Christie

Project Overview

- ARA is an advanced wireless research platform covering lowa State University, Ames, and nearby rural areas.
 - Tasked with creating a system that will recognize and predict when a weather event is occurring.
 - This trigger, signals data collection before a given weather event has begun and allows us to continue collecting data until the weather event has passed.
 - This weather data will eventually allow researchers to determine how the performance from the ARA framework differs during different weather events.

Agronomy Farm

Wilson Hall


Problem Statement

- Want to intelligently collect a wide range of network data during a variety of weather events.
- Use forecast data to predict future weather events to gather data only when weather events we want to record are going to occur.
- Store collected data and allow for user queries to access and format selected data.

Artifacts-Journey Map

Artifacts - Pros/Cons Table

Pros	Cons
 Modular Design Accounts for false positive and false negative predictions on weather. Ensures weather events close together are gathered together as one event instead of two Can run as a background multi-threaded process 	 Storage Capacity Constant API Key Calls Weather instruments collect data could be unpredictable or could go down Lead-in time metrics for prediction can vary Identifying correct features from weather APIs to make accurate weather predictions

Artifacts-Internal/External Complexity

Internal	External
 Multiple subsystems that are interconnected Gathering and processing weather data Weather data prediction model Modular design of all subsystems Cascading changes within subsystems 	 Incorporating weather APIs into our subsystems to predict weather events Incorporating the ARA platform weather collection instruments along with APIs to correctly predict weather events occuring

Human

- First, we derived requirements that we will plan to implement in our design
- Determined a solution that addresses user needs well
 - Since we derived the requirements directly from the user needs
 - \circ $\,$ Allows users to query for weather data on certain days
- Changes could include integrated UI with ARA framework website so users an query data directly from ARA website

Economic

- Currently no similar large scale projects
- External Weather API's are an existing solution to a sub feature
 - Tomorrow
 - Open-Meteo
 - National Weather Service API
- Use multiple API's to mitigate failures

Technical

- Internal:
 - Multiple subsystems that are all interconnected and play off of each other
 - Gather and processing weather data and parsing into a common format
 - Weather data prediction model to determine when a weather event will occur
 - Ensuring modular design of all subsystems
 - Cascading changes within subsystems
- External:
 - Incorporating weather APIs into subsystems
 - Incorporating ARA platform weather instruments along with APIs to predict weather events

Conclusion

We have identified:

- The artifacts our team has developed
 - Journey Map
 - Pros/Cons Table
 - Internal/External Complexity
- How our solution addresses user needs
- The drawbacks of our solution
- How our solution builds on existing solutions
- Our justifications for the internal and external complexity of our design

